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A series expansion for the ground-state energy of a multispecies quantum fluid is obtained. This ex- 
pansion is derived by assuming that the ground-state wave function for the fluid can be approximated by the 
symmetrized ground-state wave function for a mixture of quantum ideal gases times a product of pair 
functions. The lowest-order approximation to the energy is minimized with respect to variations in these 
pair functions in order to obtain an approximation to the ground-state wave function for the system. In 
principle, this variational procedure can be carried out to any desired order in the energy expansion, and 
the machinery for doing so is explicitly exhibited. The results of this variation in the lowest order are 
applied to a two-species system consisting of electrons and nuclei. The results are consistent at high densities. 

I. INTRODUCTION 

N recent years, a great deal of attention has been I given to the thermodynamic properties of the 
quantum electron gas. A fair number of techniques 
have been developed for the treatment of this problem. 
Some of these are the perturbation expansion which 
used the Green’s-function technique1+ and another 
developed by Bohm and Pines4 which uses the random- 
phase approximation (RPA). These techniques give 
good results a t  high densities. A variational method has 
been developed by Gaskell,6 who uses collective co- 
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ordinates and the RPA, which is also good at  high 
densities. Hedin6 has combined the RPA and the 
Martin-Schwinger integral equation to obtain good 
results in the intermediate density range. The lattice- 
gas approach7ss holds a t  low densities. 

While attempts have been made to apply the Green’s 
function technique to systems composed of more thag 
one species of particle’g the results are very restricted: 
A variational method for determining the ground-statrk 
properties of multispecies quantum systems is presented 
in this paper. The method developed here is similar to 
that used by Gaskells in his treatment of the quantum 
electron gas. We assume that the ground-state wave 
function can be approximated by 

P=Po expl-W 9 (1.1) 
6L. Hedin, Phys. Rev. 139, A796 (1965). 

8 W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961). 
BH. E. DeWitt, J, Mil%. Fhys. 7, 616 (1966). 

E. Wigner, Trans. Faraday SOC. 34, 678 (1938). 
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where 0 is a sum of binary functions of the magnitude of 
the distances between all particles and $o is some known 
ground-state wave function for the multispecies system. 
In principle, $0 can be any function of the coordinates 
of the particles which is normalized and properly sym- 
metrized so that it will contain the effects which arise 

system composed of electrons and spin-% nuclei a t  
high densities. It is easy to repeat this calculation for a 
system composed of electrons and Bose nuclei, for ex- 
ample, He4 at  high densities. 

11. ENERGY OF THE SYSTEM 
from the indistinguishibility of identical particles. In  
practice, we have in mind allowing $0 to be the ground- 
state wave function for a mixture of n ideal quantum 
gases, n being the number of species of particles. 

When $0 is the ground-state wave function for a 
mixture of n ideal quantum gases, we can write 

We shall consider the system to be composed of ' ~ d  

species of particles in a box of volume V. There are N I  
particles of mass ml, Nz particles of mass m2, up to Nn 
particles of mass m,. The Hamiltonian for the system 
can be written as 

n Na k2 
n 

#o= IT + o a ,  
a-1 

where is the ground-state wave function for an ideal 
gas composed of the ath species of particle. If the ath 
species consists of Fermi particles, then $oa is the Slater 
determinant of plane waves. If the ath species consists 
of bosons, then #oa is unity. Thus any mixture of 
fermions and bosons can be treated. 

Other authors have used trial wave functions of a 
similar form for one-component systems. Gaskell,6 for 
example, has used exactly this form in his treatment of 
the electron gas. Others, for example, Woo,lo who treats 
He3 atoms, have used a form in which is a solution 
to a system of interacting bosons. While this approach 
is valid for the treatment of interatomic potentials, 
such as the Lennard-Jones potential, it neglects the 
effects of symmetry upon reJ2 and is inadequate for the 
treatment of potentials such as the Coloumb potential. 

A series expansion for the energy is derived which can 
be minimized with respect to variations in 0 to deter- 
mine the ground-state wave function for the system. 
We illustrate the variational procedure by applying it 
to the lowest-order term in the energy expansion. The 
machinery for doing so is explicitly exhibited. 

The solution in the lowest-order approximation for 
the one-species system is identical to that of GaskeK6 
We also obtain the solution for the two-species system 
and apply it to a system composed of electrons and 
nuclei. It is found that it is appropriate to write the 
energy as the sum of the electron-gas energy plus the 
mclei-gas energy plus a term which represents the 
interaction between the electrons and the nuclei. Since 
the lowest-order approximation to the energy is equival- 
elht to the RPA plus the Broyles-Sahlin" (BS) approxi- 
mation for the pair-correlation functions, these results 
are expected to be good at  high densities. However, a t  
low densities we know that the BS approximation is 
not valid, and thus these results would not be expected 
to hold. 

We also explicitly evaluate the energy of a two-species 

IoC. W. Woo, Phys. Rev. 151, 138 (1966). 
IIA. A. Broyles and H. L. Sahlin, Bull. Am. Phys. SOC. 8, 32 

(1963); A. A. Broyles, H. L. Sahlin, and D. D. Carley, Phys. Rev. 
Letters 10, 319 (1913). 

a=-C C -Vaj2+ (2.1) 
a-1 j-1 2ma 

where #i is Planck's constant divided by 2 r ,  Vaj2 is the 
Laplacian with respect to the j t h  particle of the ath 
species,12 and the U is the potential-energy operator. 
In general, U depends upon the Coordinates of all the 
particles and is here assumed to be an algebraic operator. 

The Hamiltonian is now rewritten in the form 

H =  Ho+ U' , (2.2) 
where 

and 

For the present, UO is an arbitrary algebraicpotential. 
In order to proceed with the calculations, we must now 
solve the equation 

for the eigenvalue EO and the eigenfunction $0, cor- 
responding to the ground state of the system. The 
eigenfunction $0 is normalized and must be symmetrized 
so that it is symmetric upon the interchange of identical 
bosons and antisymmetric upon the interchange of 
identical fermions. In practice, we are able a t  the present 
time to solve Eq. (2.5) only for the case in which UO is 
zero (i.e., the ideal quantum gas). However, for the 
sake of generality, we shall allow U O  to remain arbitrary 
throughout the formalism. 

If we choose the eigenfunction $0 to be real, then we 
can write the real ground-state wave function for the 
total system as 

$= #,@12 (2.6) 

where 0 is a real symmetric function of the coordinates 
of all of the particles. In terms of the wave function $, 
the expression for the energy of the ground state of the 
system is given by 

U'= u- uo. (2.4) 

Ho#o= Eo$o (2.5) 

1 
E=-/#B$d7= 0 ( H ) ,  (2.7) 

la We have adopted the convention of using Greek indices for 
numbering the species, while using Roman indices for numbering 
the particles of a given species. 



170 G R O U N D  S T A T E  O F  M U L T I S P E C ' I E S  Q U A N T U M  F L U I D S  295 

where 

Q=/#2dr. (2.8) 

The notation dr  stands for the supervolume element 
given by 

(2.9) 
a-1 j-1 

where draj is the volume element corresponding to the 
j th  particle of the ath species. 

Using Eqs. (2.1), (2.2), and (2.6), we can write 

only upon the separation of individual pairs of particles. 
This approximation appears to introduce very little 
error, and its use has been widespread. 
Our calculation will be facilitated by expressing 6 as a 

Fourier series. With this in mind, we begin by noting 
that with the pair approximation, e can be written in 
terms of its Fourier components as 

In  Eq. (2.16), the P(K) are n-dimensional column 
vectors given by 

(2.18) 

are collective coordinates for the ath species and the 
dagger stands for Hermitian adjoint.13 The @(K) are 
rtXn matrices whose elements are given by the Fourier 
transform 

Then, from Eqs. (2.5) and (2.7), 

J r 

n NU h2 

a-I j-12ma 
E= Ea- __Q1 [e-e'2(Vaj#02) (Vaje-e'2) 

+#,2e+l2Vuj2e-@' 2]dr+(U'), (2.11) r&p(K)= B(r)eiK*'dr. I (2.19) 

where we have used By using the fact that 0 is real and depends only upon 
the separation of individual pairs of particles, it is easy 
to show that the @(K) are real symmetric matrices and, 
in addition, satisfy the relation 

# ~ - e ' 2 ( v Q ~ ~ O ) = ~ e ' - e ' 2 ( v U ~ ~ 0 2 )  (2.12) 

Equation (2.11) can be simplied by writing 

e-@12(Vaa&2) (Vaje'-b'/2)+#02e-@'zV a3 .2e-e-812 (2.20) 

in which case the energy becomes 

1 n Nu h2 

2 a = ~  j=1 2mu 
+- c C -Q-l/vaj. (#2vaje)ar. (2.14) 

The last term in this equation represents surface effects 
which can be neglected as the volume becomes large. 
Thus the expression for the energy is given by 

Equation (2.15) is a complete general expression for 
the energy. If we now minimize the energy with respect 
to variations in 8, we could in principle solve for 8, and 
thus for the ground-state wave function for the system. 
To attempt this variation without approximation would 
indeed be an overwhelming task. We therefore choose to 
approximate e as a sum of pair functions which depend 

X [Pt(K)@(K)Puj(K)- Paj+(K)@(K)P(K)] 

X [Pt(L)@(L)Puj(L)-Paj+(L)@(L)P(L)]. (2.24) 

After some tedious but straightforward manipulation, 

18 In this paper, we denote matrices by boldface upper-case 
letters and matrix elements by the corresponding lower-case letter. 
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Eq. (2.24) reduces to 

n Nu h2 h2 
-(V,jO)*(V,je)=- K * L  

U=I j=12mu 2m1V KL 

X [Pt(K)@(K)E(K- L)@(L)P( L)], (2.25) 

where E(K-L) are nXn matrices whose elements are 
given by 

mu V 

and &a is the Kronecker delta. Using Eq. (2.25),  the 
expression for the energy becomes 

X [Pt(K)@(K)E(K- L)@(L)P(L)]+ U t ) .  (2.27) 

If the potential Ut is a sum of pair functions (for 
example, the Coulomb potential), then it can be 
written as 

For reasons which will be clear later, it is desirable to 
rewrite the last term in this equation so that the sums 
over K and L are restricted to values of K and L for 
which K,>L,>O, where K ,  is the z component of the 
vector K. When this is done, Eq. (2.31) becomes 

h2 
E= Eo- E,+- C K 2  

8mlV K 

K -  L Re(Pt*(K)@(K)E*(K+L)@(L)P(L) 
K*>L.>O 

-Pt(K)@(K)s(K-L)@(L)P(L)), (2.32) 

where Re stands for the real part of the function. 
Unfortunately, a t  this point it is necessary to drop the 

matrix notation. If we employ the usual convention of 
summation over repeated Greek indices,. ,then Eq. 
(2.32) becomes 

Here the M(K) are nXn real symmetric matrices whose 
elements are given by 

where 
PUB(K) = - 4m1 /ul(r)e-*x*rdr. (2.29) ga= (m/ms>Pso (2.34) 

and pso is the density of particles of the ,Bth species. 
The integrals 

h2K2 

As was the case with @(K), it can be shown that 

M(K) = M(- K) . (2.30) 

The second term in Ea. (2.28) remesents the self- 
energy of the particles aLd must be-subtracted out in 
order to use the P(K). It is, however, simply a constant, 
which we shall represent by E,. Using Eq. (2.28), the 
expression for the energy given by Eq. (2.27) becomes 

and 

ReCou(Kh*(K+ L)p,(L) --P~*(K)PS(K- L)P&)) 

h2 -Pu*(K>pa(K- L)P,(L)lW7 (2.36) 

depend upon the @(K), and this dependence must be 
known before our variational procedure can be applied 

integrals of the type given by Eqs. (2.35) and (2.36) is 
discussed, and by using this method a series for the 
energy is obtained in which the dependence of each 
term upon the @(K) is known. 

X (Pt (K) [@(K) (0M-K) + M (K)]P(K))- - 
8ml V 

'C' K'L(Pt*(K)@(K)s*(K+L)@(L)P(L)), (2'31) to Eq. (2.35).  In  Set. 111, a method for evaluating KL 

where the notation CgL' means that K =  - L is omit- 
ted from the double sum, and the asterisk means 
complex conjugate. 
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111. EVALUATION OF INTEGRALS AND 
ENERGY EXPANSION 

The route taken in order to obtain the energy is 
somewhat circuitous, and the notation has a tendency 
to be cumbersome. In  order to help prevent the reader 
from being distracted by the mathematics which 
follows, some preliminary discussion of this section is 
desirable. 

If one views the integrals in Eqs. (2.35) and (2.36) 
simply as functions of the @(K), which enter through 
$z, the energy expression in Eq. (2.33) is in a fairly 
simple form. The entire complexity of the problem is 
associated with expressing these integrals as known 
functions of the @(K). Section I11 A is devoted to the 
development of a method by which this can be ac- 
complished. The final expression for these integrals is 
in the form of a series expansion. In Sec. I11 B, the 
results of Sec. I11 A are used to expand the energy as a 
seriek. The formal expression for this energy is fairly 
complicated. Fortunately, much of the complexity dis- 
appears when we examine it term by term. 

A. Evaluation of the Integrals 

Equations (2.35) and (2.36) are special cases of 
integrals of the general form 

where F(P) stands for a function of any number of the 
collective coordinates p,(K), and $z has been replaced 
by the expressions in Eqs. (1.1) and (2.16). We thus 
direct our attention to the evaluation of this integral. 

It is convenient at this point to transform the complex 
variables P(K) to a set of real variables X(K) defined 
by14 
. X(K)= (2V)-1’z[P(K)+P*(K)], K,>O 

and (3.2) 
X(K)= -i(2V)-”’[P(K)-P*(K)], K,<O. 

Using Eqs. (3.2), the integral in Eq. (3.1) becomes 

ICF(P)I= IP(p0) 
Xexp{ -3 C Xt(K)@(K)X(K)}#02d~. (3.3) 

Note that the definition of X(K) changes when R, 
changes sign. This is the reason for writing the last term 
in Eq. (2.32) so that the sums over K and L are restricted 
to the region in which K,> L,>O. 

K 

Finally, we make the transformation 

X(K) = WK), (3.4) 

where the A(K) are lzxlz real symmetric matrices 
whose elements u,B(K) satisfy the relation 

G,(K>Q,B(K)= nu,@) = xa(K)x,dK)$02d7 2 (3.5) s 
and the x,(K) are the elements of the column vector 
X(K). Using this transformation in Eq. (3.3) we obtain 

m m I =  / a Y )  exp{-3 c Yt(K) 
K 

x CA(K)@(K)A(K)IY(K) }$02d?. , (3.6) 

G(Y) =FCP{A(K)Y(K)}I. (3.7) 
where 

This transformation is introduced in order to make 
Jy,(K)y,q(K)$02d~= 6,~. The entire procedure is often 
referred to as the Gram-Charlier expansion14 and is 
designed to make the second and third terms in the 
expansion zero. 

By introducing the Jacobian of the transformation 
from r space to Y space, Eq. (3.6) becomes 

I[G(Y)]= /G(Y) exp{ -3 C Y+(K) 
K 

x CA(K>@(K>A(K>IY(K>}J(Y)dY , (3.8) 

dY=nr]:dy,(K)=IIdY(K), (3.9) 
where 

3 c a  K 

and the Jacobian J(Y) contains the unperturbed wave 
function \to, so that 

(3.10) 

The problem has thus been reduced to that of finding 
an expression for J(Y). 

By expanding J(Y) in a Hermite series14 and then 
using the generating function for Hermite polynomials, 
the Jacobian may be written 

J(Y)= lim (expd)(X(WY)h exp{ -& [Yt(K)Y(K) 
K T +O .W+O 

+ Tt (K)T(K) - 2 T+ (K)Y (K)]} n ( 2 ~ ) - ~ ” ,  (3.1 1) 
K 

where T(K) and W(K) are column vectors with ele- 
ments t,(K) and w,(K), 

14 A. A. Broyles, Z. Physik 151, 187 (1958). -. I -. , 
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and 

(mm>lJ 

exp{+ [2W+(K)Y(K)- Wt(K)W(K)]}J(Y)dY =/ K 

= / exp{3 $ C2Wt(K)Y(K)- Wt(K)W(K)]}#&h. 

(3.13) 

By using Eq. (3.11) the integral of Eq. (3.8) can now 
be written as 

KG(Y)I= (expd)(X(WY>h exp{ -3 C T+(K)T(K)} 

X \G(Y) exp{-3 C K CY+(K)(A(K)Q(K)A(K>+I) 

K 

where I is the nXlz  unit matrix. By completing the 
square in the exponential term which appears under 
the integral, this expression can be written 

I[G(Y)I= (expo) { /G(Y) exp(3 C CY(K>-T'(K)lt 
K 

X exp{ 4 C Tt(K)[B-l(K)-I]T(K)} 
K 

X (X(WY)>o, (3.15) 

170 A N D  T.  D U N N  

where we have defined 

B(K) = A(K)Q(K)A(K)+I (3.16) 
and 

T'(K)= B-l(K)T(K). (3.17) 

I t  is understood in Eqs. (3.14) and (3.15) that after 
operating with expo, the t,(K) and w,(K) are to be set 
equal to zero. Note that Eq. (3.15) is a shorthand nota- 
tion for an infinite series, since, in general, the operator 
expd must be expanded as 

0 1  

i-0 j !  
expo= C - d j .  (3.18) 

B. Energy Expansion 

If we write Eq. (2.32) in terms of the real variables 
y,(K), we obtain 

(3.19) 

(3.20) 
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The formal expression for the energy given by Eq. 
(3.19) in conjunction with Eqs. (3.21) and (3.22) is 
complicated, to say the least. Fortunately, much of this 
complexity disappears if one examines the energy ex- 
pansion term by term. In  Appendix B, the first several 
terms of this expansion are calculated. The energy ex- 
pression obtained by retaining term? out to j = 3  in 
the expansion of the operator expo, Eq. (3.18), is 
sufficient to illustrate the nature of the expansion. Also, 
since in practice we are limited to systems for which 
and $0, Eq. (2.5), represent n ideal quantum gases, we 
shall restrict ourselves to that case. This restriction 
results in some simplification of the energy expression 
which,-by retaining terms out to j =  3 in the expansion 
of expo, is 

h2 ml 

8mlV2 KL ms 

Xdpf-'(K+ L)d,t-l(L)a,t-'(K)af ,l(K+ L)a,,-'( L) 

X &,'(K) -- E' K .  Q u o (  K)*sr( L)dQf-'( K) 

X (pr(K)pc*(K+L)p,(L))o, (3.24) 

where the d,,-l(K) are the elements of the matrix 
D-'(K) which is the inverse of the matrix D(K) whose 
elements are given by 

d ~ ,  (K) = [ ~ Q Y  (K) + UQ.~-'( K)] . (3.25) 
It is important to realize that the only unknown quanti- 
ties which appear in Eq. (3.24) are the $,s(K). A dis- 
cussion of the a,,(K) and the (p,(K)p,*(K+L)p,(L))o is 
given in Appendix C. While the complexity of the 
higher-order terms in the energy expansion increases 
rather rapidly, they too contain only the $Qp(K) as 
unknowns. 

In  Eq. (3.24), Eo is the energy of a mixture of n ideal 
quantum gases and, as mentioned earlier, Es  is a self- 
energy term. The next Lerm arises from the j = O  term 
in the expansion of expo and is the tirst approximation 
to the two-body interactions. The last t e rp  in Eq. (3.24) 
arises from j = 3  in the expansion of expo, and it is the 
first approximation to the three-body interactions. The 
terms which arise from j =  1 and j =  2 are zero . 

It is now possible, in principle, to expressJhe energy 
to any desired order in the expansion of expo, minimize 
it with respect to variations in the +,p(R), and thereby 
obtain the energy correct to any desired order in the 
expansion. This procedure is easy to carry out if one 
terminates the energy expansion after the first approxi- 
mation to the two-body interactions. 

Once the 4,p(K) have been determined, the wave 
function can be obtained from Eqs. (2.6) and (2.16), 
and is given by 

IV. VARIATION 

The lowest-order approximation to the energy beyond 
the ideal quantum-gas arises from the j =  0 term in the 
expansion of (expo) in Eq. (3.24), and is given by 

h2 
E= Eo- EE+- 

8ml 

X E  K2[dQ~(K>g~8,(K)+l*Q7(K)]dQr'(K) * (4.1) 
K 

Since the j =  1 and j =  2 terms are zero, this expression 
is correct out through the j = 2  term. This approxima- 
tion is equivalent to approximating the Jacobian Eq. 
(3.11) by a Gaussian. Note that Eq. (4.1) is the same 
as the expression that is obtained by making both the 
RPA and the BS approximation. 

If we use Eq. (3.25) to express Eq. (4.1) in terms of the 
dQp(K) and the dQ~-'(K), we get 

h2 
E=Eo-Es+- K2{gQ[dQQ(K)-22aQQ-'(K)] 

8m1 K 

+~QB-'(K>~PQ(K)} , (4.2) 
where 

cap@) = a,,-'(K)gyayp-'(K)+CLQp(K). (4.3) 

If we bear in mind that @(K) is a symmetric matrix, so 
that 

d d K ) = 4 d K )  r (4./ 

it is easy to show that 

ad,,(K)/a&p(K)= 6,Q6ffl+6,86fQ 2 a#@ 
(4.5) dd,t(K)/a+QQ(K)= 6yuSsu 

and 

ad,e-'(K)/aap(K) = d,Q-'(K)d,p-'(K) 
+d,p-'(K)dQf-'(K), a#/.? (4.6) 

d,t-'(K)/a+QQ(K) = d,Q-'(K)dQe-'(K). 
If we now minimize Eq. (4.2) with respect to variations 
in the $Qa(K) by making use of Eqs. (4.5) and (4.6), we 
obtain 

g,6,t--d,Q-'(K)cQp(K)ds,'(K)=0, (4.7) 

which can be written as 

dQ'Y(K)g7d,dK>- cQ@(K) = (4.8) 
By using Eqs. (4.8) and (4.2), we can write the energy 
as 

We must now solve Eq. (4.8). In  general, this is by 
no means a trivial task. In Sec. V, we shall give the 
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solutions to Eq. (4.8) for a two-species system, and then 
use these solutions for the analysis of a system of elec- 
trons and nuclei at high densities. 

V. TWO-SPECIES SYSTEM 
In  this section, we shall consider the solution to 

Eq. (4.8) for a two-species system. For the two-species 
system, Eq. (4.8) is given by 

g1d1i2(K)+gzdlzz(K) = Cn(K) 9 

{ gidii(K)+ gzdzz(K) 1 &(K) = d K )  , 
gldiz2(K)+g~dzz2(K) = czz(K). 

(5 -1 1 

It is easy to show by direct substitution that Eq. (5.1) 
has the set of solutions given by 

dii(K)= {cii(K) 
+C(cii(K)czz(K)- ~~z~(K))gz/gil"~}/f(K) , 

diz(K)=ciztK)/f(K) 7 

and 

dzz(K)= {czz(K) + [ ( ~ i i ( ~ ) ~ z z ~ ~ ) ~ ~ ~ z ~ ~ ~ ) ) ~ i / ~ z ] ~ ' ~ } / f ~ ~ )  , (5.2) 

Using Eqs. (4.9) and (5.2), the expression for the energy 
becomes 

tG2 
E= Eo- Ea+- 

We can now proceed in a straightforward manner to cal- 
culate the energy from Eq. (5.3) by using Eq. (4.3) for 
the cas(K). In  general, the sum over K (to be converted 
into an integral) must be done numerically. 

For our application to a system of electrons and 
nuclei, it is perhaps more informative to rearrange 
Eq. (5.3) into a form which is more easily analyzed. 
To that end, we note that by adding and subtracting 
2[glgzcn(K)cz~(K)]'~2, we can write 

We can now expand Eq. (5.4) in a Taylor series to give 

If we now choose ml<m and note that in most cases ml will be much less than m2 (for example, in a hydrogen 
plasma ml is the mass of an electron, while mz is the mass of a proton), then gz<<l, and a good approximation to 
f(K) is given by the first two terms in Eq. (5.5). Using this approximation for f(K), the energy becomes 

4ml K L 

Here we have used Eq. (2.28) to write 

h2 

4ml K 
E, = - K 2[$pi 'pi~ (K) + +pz0pil (K)] (5.7) 

EO= .&mi+ &my (5.8) 
and 

where EO,,,, is the energy of an ideal quantum gas of 
particles of mass ml and Eons is the corresponding quan- 
tity for particles of mass mz. 

The energy expression is now in an interesting form, 
which is easy to interpret. The terms enclosed by the 
first set of brackets depend only upon the particles of 
mass ml and the interaction between the particles of 
mass ml. For example, if the particles of mass ml are 
electrons, which interact through the Coulomb force, 
then the terms in the first set of brackets are simply the 
energy of a quantum electron gas. Likewise, the terms 
enclosed by the second set of brackets depend only upon 
the particles of mass m2 and the interaction between the 
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particles of mass m2. The last term in Eq. (5.6) is a result 
of the interaction between the two species of particles. 
Note that if species (1) does not interact with species 
(2), that is, if c12(K) = 0, then this last term is zero. 

We shall now consider Eq. (5.6) for a system which is 
composed of Z N  electrons and N nuclei, where the 
charge on the nuclei is Ze, e being the magnitude of the 
charge of an electron. Species (1) is taken to be the 
electrons, while species (2) is composed of the nuclei. 
From Appendix C we have 

aa,dK)=paoSa(K)6,s, (5.9) 

where S,(K) is the structure factor for the ideal quan- 
tum gas composed of particles of mass ma. Thusfrom 

Eq. (4.3) we have 

and 

~22(K) [ ~ / P Z ~ S ~ ~ ( K ) ] [ ~  + P Z ~ P ~ ~ ( K ) S ~ ~ ( K ) / ~ I  9 

where we have defined 6=ml/m2. If we also use Eq. 
(2.29) to calculate 

then by using Eqs. (5.6), (5.10), and (5.11) the energy 
becomes 

where m(K) = pl0m(K) and p22(K) = PZ~CLZ~(K)/S. 

into integrals via the replacement 
The sums over K in this equation are to be converted 

(5.13) 

The resulting integrals are quite complicated and must, 
in general, be evaluated numerically. In the limit of 
very high densities, however, a rather good approxima- 
tion to the energy can be obtained. The terms enclosed 
by the first set of brackets have been evaluated by 
Gaskel15 in the limit of high densities, with the result 
that the energy per electron is given by 

E,= 3 ( a / ~ ~ ) ~ + + B ( 3 / ? r ) a / r * + ~ ( 3 / ~ ) ~  Inr,. (5.14) 

Here the energy is measured in rydbergs, a= (97r/4)lI3, 
and ra is the so-called ion-sphere radius given by ro/ao, 
where a0 is the Bohr radius and r0=(3/4n-p1~)~/~. For 
spin-$ nuclei, the terms enclosed by the second set of 
brackets dfier from those in the first only through the 
mass. From the terms in the second set of brackets, the 
energy per nucleus is given by 

The contribution to the energy from the last term in 
Eq. (5.12) is actually associated with both the electrons 
and nuclei. However, because of the very much greater 
mass of the nuclei, it is appropriate to view this con- 
tribution as resulting from an alteration in the electron 
wave function. We therefore choose to measure this 
energy with respect to the number of electrons. We thus 
find that in the limit of very high densities the inter- 
action energy per electron is given by 

The energies given in Eqs. (5.14) and (5.15) have been 
thoroughly discussed We shall therefore 
simply recall that the first term in either Eq. (5.14) 
or Eq. (5.15) is the ideal gas energy, the second is the 
exchange energy, while the final term is the dominant 
contribution to the correlation energy at high densities. 
Most authors also include a constant term in these 
energies. This constant term is also present in our 
theory; however, we have neglected it in the evaluation 
of the integrals. 

The interaction energy per electron given by Eq. 
(5.16) is of the same form as the electron or the nucleus 
correlation energy. This is not unexpected. Since we 
know there will be no direct exchange energy between 
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distinguishable particles, we therefore expect the first 
contribution to the interaction energy to arise from the 
same type of changes in the wave function which gave 
rise to the lnr, terms in Eqs. (5.14) and (5.15). 

It is interesting to compare Eq. (5.16), for the case 
Z=1, with the electron correlation energy. If we set 
Z=1, then Eq. (5.16) becomes 

Eint= [1/4(1+ 6)](3/d2 h r ,  * (5.17) 

Note that this energy is greater than the electron cor- 
relation energy by the factor 4/(1+6). A factor 2/(1+6) 
can be accounted for by reduced-mass considerations. 
This can be made clear by noting that when 6=1, this 
factor is unity. The remaining factor of 2 is accounted 
for by the fact that in the electron-nucleus interaction 
we associated all of that energy with the electron, while 
in the electron-electron interaction we associated half 

the BS approximation, we would expect these solutions 
to be a rather poor representation of the system. 

The work presented here is applicable only to the 
ground state of the system. While the ground state is of 
interest in itself, it also provides a check point for 
theories which treat the system a t  nonzero tempera- 
tures. We are presently attempting to treat multi- 
species systems at  nonzero temperatures by effective- 
potential methods. The results of this work, plus the 
fact that the electron gas has already been treated in 
this manner,16 are very encouraging. 
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APPENDIX A 
Of the with each The factors Of which 
appear in Eq. (5.16) arise from the difference in density In  order to use Eq. (3.15) for the evaluation of F,,(K) 

and Gus,(KL), we must evaluate the integral and the difference in charge between the two species of 
particles. 

pointed out by Ga~kel l ,~  the correlation energy ob- 
tained here differs from that obtained from perturba- 

( 3 / ~ ) ~ ;  however, its source is unknown. 

One further point should perhaps be made. As was I'CG(Y)l=/G(Y) eq4-4 [Y(N)-T'(N)]+B(N) 
N 

Y (AI) 
dY(N) 

XCY(N)-T'(N)I) rI - 
N (27r)"'2 tion the~ry.l-~ The discrepency is essentially the factor 

where G(Y) is the function appropriate to either 
F,,(K) or G,s,(KL). For F,,(K) the integral is VI. CONCLUSIONS 

A series expansion for the ground-state energy of a 
many-species quantum system which is correct to 
within the pair approximation for the effective potential 
has been obtained. We then illustrate a procedure by 
which this energy expansion can be minimized with 
respect to variations in the effective potential to obtain 
the ground-state energy for the system. Although we 
illustrate this procedure by carrying it out retaining 
only the lowest-order term in the energy expansion, it is 
possible, a t  least in principle, to carry this out to any 
desired order in the energy expansion. The computa- 
tional diBculty becomes considerable if one attempts 
to go beyond the lowest-order approximation. How- 
ever, we believe that it is possible to obtain some cor- 
rection to the lowest-order approximation, perhaps 
by iterating from the solutions to the lowest-order 
approximation. 

The solutions to the variational equations for the 
lowest-order approximation to the energy have been 
obtained for a two-species system. When these solutions 
are used to analyze a system composed of electrons and 
nuclei, it is found that its energy can be written as the 
s u m  of the electron-gas energy plus the nuclei-gas 
energy plus a term which represents the interaction 
between the electrons and the nuclei. In the limit of 
high densities these solutions appear to be consistent. 
However, a t  low densities, since the lowest-order ap- 
proximation to the energy is equivalent to the RPA plus 

I- 

Xexp{-+ C Zt(N)B(N)Z(N)) 
N 

where 
(A31 

and the t,'(N) are the elements of the column vector 
T'(N). If we note that because of the quadratic form in 
the exponential in Eq. (A2), only even powers of z,(K) 
will contribute to the integral, then we have 

Z(N) = Y (N) - T'( N) 

Integrating this equation by parts yields 

Is T. Dunn and A. A. Broyles, Phys. Rev. 157, 156 (1967). 
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Since only even powers of zf(K) contribute to the integral, this expression can be written 

APPENDIX B 
We now evaluate F,,(K) and G,p,(KL) o>t to order 

j = 3  in the expansion of the operator (expo). For this 
purpose, it is convenient to write 

and 

where the Fp,j(K) and G,p,j(KL) are the terms which 
arise from Oj. We first note that F,,(K) contains only 
even powers of tC(K), and thus F,,j(K)=O for all odd 

values of j .  Likewise, G,p,(KL) contains only odd 
powers of t,'(K), and thus G,s,j(KL)=O for all even 
values of j .  

The j=O terms are quite easily calculated. Since 
zero is even, G,p,O(KL) is zero, and therefore 

Fay0 (K) = VU, (K) bft-'( K) at-, (R> = Vd,,-'( K) , (B3) 

where we have defined 

&7-'(K) = (K)bft-'( K)ar,(K) . 034) 

As mentioned previously, the transformation via the 
matrix A(K) was designed to make the j =  1 and j =  2 
terms We are thus left with the calculation of 
G,py3(KL). 

From Eq. (3.21) it is easy to see that G,py3(KL) is a 
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If #o represents a mixture of ideal quantum gases, then 
the uapql(K) are the elements of a diagonal matrix and 

We now present a brief discussion of the functions 
uas(K) and (p,(K)pp(K+L)p,(L))o for the case in which 
$0 is the ground-state wave function for a mixture of 
ideal quantum gases. Using Eqs. (3.2) and (3.5), we 
can write 

where K,>O. Since for a mixture of ideal gases different 
species do not interact with each other, u a ~ ( K )  is zero 
unless a=& Thus we have 

It is easy to show that the last term in this expression 
is zero. (In this Appendix, we shall not employ the 
summation convention.) 

By using Eq. (2.18), Eq. (C2) can be further simplified 
to 

N. NU 

v j-1 IC-1 
u,s(K) = a a 8  eiK.(rui-rak)#&T. (C3) 

Using the definition of the pair-correlation function, 
this may be written 

where, since we have assumed go2 to be normalized, 
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is the pair-correlation function for the ath species, and 
the notation dr' means that integration over raj and 
rak is omitted. Integration of Eq. (C4) yields 

ua5(K)= ~a~p,o[1+paogaa(2)(K)]= Ga~pa0Sa(K). (C6) 

where g,a(2)(K) is the Fourier transform of gaa(2)(r) 
and Sa(K) is the structure factor for the ath species. 

The structure factor for the ideal quantum gas has 
been evaluated elsewhere.'6 If the ath species consists of 
spin-$ fermions with equal numbers of particles in the 
spin-up and spin-down states, then 

Sa(K) = $xu( 1 - &x,') , Os 5 2 

and 

S,(K)= I ,  2 5 x a  (C7) 

xu= K/(3n2pa0)1'3. (C8) 

where 

If the ath species consists of bosons, then 

Sa(K)= 1 (C9) 

for all values of K. 
Since the different species of a mixture of ideal gases 

do not interact, (p,(K)p~*(K+ L)p,(L))o is zero unless 
a=fl=y. We therefore direct our attention to the evalu- 
tion of 

ba(K)pa*(K+L)pa(L))o 
N, 

= C exp{i[K. raj- (K+ L) *rak+ L.r,l]}#02d7. 
jk I 

(C10) 

See, e.g., T. Gadtell, Ref. 5. 

This expression can be written as 

cPa(K)Pa*(K+ L)P~(L))o 
= Nu{ 1+paoCgaa(2) (K) + (K+ L) + (L)]} 

+ba0)3\ exp{iCR.n-(K+L).r~+L.r3]} 

X ga(3)(rlrzra)drldrzdr3, (C11) 

where g,(3)(r~r~r3) is the three-body correlation function 
for the ath species. 

For the ideal quantum gas, ga(3)(r1r~r~) is a known 
function. In fact, Lado" has shown that the 7-body 
correlation function ga(?)(rlrz. - Sr,,) for a system in 
which all the spin projections are parallel is given by 

ga(?)(r1r2. - . r J = C  (&l)P Da(rj-rpj), (C12) 

where Cp is a sum over all permutations of the 11 
values of j ,  (+l)p is for bosons, and (-1)P is for fer- 
mions. The function Da(rj-rk) is 

8 

P j-1 

4 

where n,(K) is the occupation number for particles 
with momentum fiK in the ground state of an ideal 
quantum gas of density pao. Since Eq. (C12) is for the 
case in which all of the particles have the same spin 
projection, if more than one spin projection is present 
in the ath species, then it must be averaged over all 
spin projections present.l' 

If higher-order terms are retained in the energy ex- 
pansion, then Eq. (C12) can be used to evaluate ex- 
plicitly the averages over #02 which will appear in these 
higher-order terms. 

F. Lado, J. Chem. Phys. 47, 5369 (1967); see, also, J. K. 
Jaen, J. Math. Phys. 8,1483 (1967). 


